6a8929b5ccce8004f4babc3102390b3461911304,examples/pipelines/multitable/multitable.py,,,#,96
Before Change
)
es = load_entityset("partitioned_data/part_1/")
label_times = make_labels(es=es,
product_name="Banana",
cutoff_time=pd.Timestamp("March 15, 2015"),
prediction_window=ft.Timedelta("4 weeks"),
training_window=ft.Timedelta("60 days"))
y = label_times["label"]
multitable = MLPipeline.from_ml_json(["dfs", "random_forest_classifier"])
multitable.update_fixed_hyperparams({
After Change
assert expected_steps == steps
// Check that we can score properly.
produce_params = {
("dfs", "entityset"): es,
("dfs", "cutoff_time_in_index"): True
}
print("\nFitting pipeline...")
fit_params = {
("dfs", "entityset"): es,
("dfs", "target_entity"): "users",
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: HDI-Project/MLBlocks
Commit Name: 6a8929b5ccce8004f4babc3102390b3461911304
Time: 2018-05-26
Author: williamxue@Williams-MacBook-Pro.local
File Name: examples/pipelines/multitable/multitable.py
Class Name:
Method Name:
Project Name: descarteslabs/descarteslabs-python
Commit Name: 233a089604121931a7f9e8b3861ca4b691cc555d
Time: 2020-01-17
Author: stephen@descarteslabs.com
File Name: descarteslabs/catalog/image_upload.py
Class Name: ImageUpload
Method Name: ImageUpload_1
Project Name: HDI-Project/MLBlocks
Commit Name: bd35ff10b4c52b7b6d5a1a089f23bd89eea5346e
Time: 2018-05-26
Author: williamxue@Williams-MacBook-Pro.local
File Name: examples/pipelines/multitable/multitable.py
Class Name:
Method Name: