d97e9cd0c30980647f31c1003d6367e6a41c7124,deepctr/models/deepfm.py,,DeepFM,#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,17
Before Change
if not isinstance(feature_dim_dict["sparse"], dict):
raise ValueError("feature_dim_dict["sparse"] must be a dict,cur is", type(
feature_dim_dict["sparse"]))
if not isinstance(feature_dim_dict["dense"], list):
raise ValueError("feature_dim_dict["dense"] must be a list,cur is", type(
feature_dim_dict["dense"]))
deep_emb_list, linear_logit, inputs_list = get_inputs_embedding(
feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed)
fm_input = concat_fun(deep_emb_list,axis=1)
After Change
:param use_bn: bool. Whether use BatchNormalization before activation or not.in deep net
:return: A Keras model instance.
check_feature_config_dict(feature_dim_dict)
deep_emb_list, linear_logit, inputs_list = get_inputs_embedding(
feature_dim_dict, embedding_size, l2_reg_embedding, l2_reg_linear, init_std, seed)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: shenweichen/DeepCTR
Commit Name: d97e9cd0c30980647f31c1003d6367e6a41c7124
Time: 2019-01-24
Author: wcshen1994@163.com
File Name: deepctr/models/deepfm.py
Class Name:
Method Name: DeepFM
Project Name: shenweichen/DeepCTR
Commit Name: d97e9cd0c30980647f31c1003d6367e6a41c7124
Time: 2019-01-24
Author: wcshen1994@163.com
File Name: deepctr/models/din.py
Class Name:
Method Name: DIN
Project Name: shenweichen/DeepCTR
Commit Name: d97e9cd0c30980647f31c1003d6367e6a41c7124
Time: 2019-01-24
Author: wcshen1994@163.com
File Name: deepctr/models/afm.py
Class Name:
Method Name: AFM