687af51bdbf146e1be4c550b0e5a6e336a7bacf6,optuna/testing/visualization.py,,prepare_study_with_trials,#Any#Any#Any#,9
Before Change
study = create_study()
if no_trials:
return study
study._append_trial(
value=0.0,
params={"param_a": 1.0, "param_b": 2.0, "param_c": 3.0, "param_d": 4.0,}
if with_c_d
else {"param_a": 1.0, "param_b": 2.0,},
distributions={
"param_a": UniformDistribution(0.0, 3.0),
"param_b": UniformDistribution(0.0, 3.0),
"param_c": UniformDistribution(2.0, 5.0),
"param_d": UniformDistribution(2.0, 5.0),
}
if with_c_d
else {"param_a": UniformDistribution(0.0, 3.0), "param_b": UniformDistribution(0.0, 3.0),},
)
study._append_trial(
value=2.0,
params={"param_b": 0.0, "param_d": 4.0,} if with_c_d else {"param_b": 0.0,},
distributions={
"param_b": UniformDistribution(0.0, 3.0),
"param_d": UniformDistribution(2.0, 5.0),
}
if with_c_d
else {"param_b": UniformDistribution(0.0, 3.0),},
)
if less_than_two:
return study
study._append_trial(
value=1.0,
params={"param_a": 2.5, "param_b": 1.0, "param_c": 4.5, "param_d": 2.0,}
if with_c_d
else {"param_a": 2.5, "param_b": 1.0,},
distributions={
"param_a": UniformDistribution(0.0, 3.0),
"param_b": UniformDistribution(0.0, 3.0),
"param_c": UniformDistribution(2.0, 5.0),
"param_d": UniformDistribution(2.0, 5.0),
}
if with_c_d
else {"param_a": UniformDistribution(0.0, 3.0), "param_b": UniformDistribution(0.0, 3.0),},
)
return study
After Change
study = create_study()
if no_trials:
return study
study.add_trial(
create_trial(
value=0.0,
params={"param_a": 1.0, "param_b": 2.0, "param_c": 3.0, "param_d": 4.0,}
if with_c_d
else {"param_a": 1.0, "param_b": 2.0,},
distributions={
"param_a": UniformDistribution(0.0, 3.0),
"param_b": UniformDistribution(0.0, 3.0),
"param_c": UniformDistribution(2.0, 5.0),
"param_d": UniformDistribution(2.0, 5.0),
}
if with_c_d
else {
"param_a": UniformDistribution(0.0, 3.0),
"param_b": UniformDistribution(0.0, 3.0),
},
)
)
study.add_trial(
create_trial(
value=2.0,
params={"param_b": 0.0, "param_d": 4.0,} if with_c_d else {"param_b": 0.0,},
distributions={
"param_b": UniformDistribution(0.0, 3.0),
"param_d": UniformDistribution(2.0, 5.0),
}
if with_c_d
else {"param_b": UniformDistribution(0.0, 3.0),},
)
)
if less_than_two:
return study
study.add_trial(
create_trial(
value=1.0,
params={"param_a": 2.5, "param_b": 1.0, "param_c": 4.5, "param_d": 2.0,}
if with_c_d
else {"param_a": 2.5, "param_b": 1.0,},
distributions={
"param_a": UniformDistribution(0.0, 3.0),
"param_b": UniformDistribution(0.0, 3.0),
"param_c": UniformDistribution(2.0, 5.0),
"param_d": UniformDistribution(2.0, 5.0),
}
if with_c_d
else {
"param_a": UniformDistribution(0.0, 3.0),
"param_b": UniformDistribution(0.0, 3.0),
},
)
)
return study
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 6
Instances
Project Name: pfnet/optuna
Commit Name: 687af51bdbf146e1be4c550b0e5a6e336a7bacf6
Time: 2020-06-06
Author: hiroyuki.vincent.yamazaki@gmail.com
File Name: optuna/testing/visualization.py
Class Name:
Method Name: prepare_study_with_trials
Project Name: pfnet/optuna
Commit Name: 687af51bdbf146e1be4c550b0e5a6e336a7bacf6
Time: 2020-06-06
Author: hiroyuki.vincent.yamazaki@gmail.com
File Name: optuna/testing/visualization.py
Class Name:
Method Name: prepare_study_with_trials
Project Name: pfnet/optuna
Commit Name: 687af51bdbf146e1be4c550b0e5a6e336a7bacf6
Time: 2020-06-06
Author: hiroyuki.vincent.yamazaki@gmail.com
File Name: tests/visualization_tests/test_parallel_coordinate.py
Class Name:
Method Name: test_plot_parallel_coordinate
Project Name: pfnet/optuna
Commit Name: 687af51bdbf146e1be4c550b0e5a6e336a7bacf6
Time: 2020-06-06
Author: hiroyuki.vincent.yamazaki@gmail.com
File Name: tests/visualization_tests/test_utils.py
Class Name:
Method Name: test_is_log_scale
Project Name: pfnet/optuna
Commit Name: 687af51bdbf146e1be4c550b0e5a6e336a7bacf6
Time: 2020-06-06
Author: hiroyuki.vincent.yamazaki@gmail.com
File Name: tests/visualization_tests/test_contour.py
Class Name:
Method Name: test_plot_contour_log_scale