78eba7b3f82b8420deac3cd28318dbfead0f9b9e,python/baseline/pytorch/seq2seq/model.py,Seq2SeqModel,encode,#Seq2SeqModel#Any#Any#,160
Before Change
embed_in_seq = self.embed(input)
//if self.training:
packed = torch.nn.utils.rnn.pack_padded_sequence(embed_in_seq, src_len.data.tolist())
output_tbh, hidden = self.encoder_rnn(packed)
output_tbh, _ = torch.nn.utils.rnn.pad_packed_sequence(output_tbh)
//else:
// output_tbh, hidden = self.encoder_rnn(embed_in_seq)
return output_tbh, hidden
def decoder(self, context_tbh, h_i, output_i, dst, src_mask):
embed_out_tbh = self.tgt_embedding(dst)
context_bth = context_tbh.transpose(0, 1)
After Change
lengths = lengths.cuda()
example["src_len"] = lengths
for key in self.src_embeddings.keys():
tensor = torch.from_numpy(batch_dict[key])
tensor = tensor[perm_idx]
example[key] = tensor
if self.gpu:
example[key] = example[key].cuda()
if "tgt" in batch_dict:
tgt = torch.from_numpy(batch_dict["tgt"])
example["dst"] = tgt[:, :-1]
example["tgt"] = tgt[:, 1:]
example["dst"] = example["dst"][perm_idx]
example["tgt"] = example["tgt"][perm_idx]
if self.gpu:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances
Project Name: dpressel/mead-baseline
Commit Name: 78eba7b3f82b8420deac3cd28318dbfead0f9b9e
Time: 2018-10-30
Author: dpressel@gmail.com
File Name: python/baseline/pytorch/seq2seq/model.py
Class Name: Seq2SeqModel
Method Name: encode
Project Name: dpressel/mead-baseline
Commit Name: 51498b09368a61bfb06849693688df6eb54d4787
Time: 2019-11-14
Author: blester125@gmail.com
File Name: python/eight_mile/tf/embeddings.py
Class Name: PositionalCharConvEmbeddings
Method Name: encode
Project Name: dpressel/mead-baseline
Commit Name: 51498b09368a61bfb06849693688df6eb54d4787
Time: 2019-11-14
Author: blester125@gmail.com
File Name: python/eight_mile/tf/embeddings.py
Class Name: PositionalLookupTableEmbeddings
Method Name: encode