9d941d30962c211971ec316bf40c2ebfbf28a567,src/orion/analysis/lpi_utils.py,,lpi,#Any#Any#Any#Any#Any#,64
Before Change
LPI value for each parameter. If ``mode`` is `linear`, then a list of
param values and LPI metrics are returned in a DataFrame format.
flattened_space = build_required_space(
space,
dist_requirement="linear",
type_requirement="numerical",
shape_requirement="flattened",
)
if trials.empty or trials.shape[0] == 0:
return pd.DataFrame(
data=[0] * len(flattened_space),
index=flattened_space.keys(),
columns=["LPI"],
)
data = to_numpy(trials, space)
data = flatten_numpy(data, flattened_space)
model = train_regressor(model, data, **kwargs)
best_point = data[numpy.argmin(data[:, -1])]
results = modes[mode](best_point, flattened_space, model, n_points)
return results
After Change
Last column is the objective predicted by the model for a given point.
Parameters
----------
point: numpy.ndarray
A tuple representation o f the best trials, (hyperparameters + objective)
space: Space object
A space object from an experiment. It must be flattened and linearized.
model: `sklearn.base.RegressorMixin`
Trained regressor used to compute predictions on the grid
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: Epistimio/orion
Commit Name: 9d941d30962c211971ec316bf40c2ebfbf28a567
Time: 2021-02-24
Author: xavier.bouthillier@umontreal.ca
File Name: src/orion/analysis/lpi_utils.py
Class Name:
Method Name: lpi
Project Name: HazyResearch/fonduer
Commit Name: 1d6771befb95f4ae94f308899633294a003dcfd6
Time: 2020-07-24
Author: hiromu.hota@hal.hitachi.com
File Name: src/fonduer/utils/data_model_utils/structural.py
Class Name:
Method Name: lowest_common_ancestor_depth
Project Name: HazyResearch/fonduer
Commit Name: 1d6771befb95f4ae94f308899633294a003dcfd6
Time: 2020-07-24
Author: hiromu.hota@hal.hitachi.com
File Name: src/fonduer/utils/data_model_utils/structural.py
Class Name:
Method Name: common_ancestor