9844e657a565158d7e46b0900270b21fbcc38d82,brainiak/reprsimil/brsa.py,BRSA,_initial_fit_singpara,#BRSA#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,900

Before Change



        // (3) random initialization

        current_vec_U_chlsk_l = self.random_state_.randn(n_l)
        // vectorized version of L, Cholesky factor of U, the shared
        // covariance matrix of betas across voxels.

        rho1 = np.sum(

After Change


        // There are several possible ways of initializing the covariance.
        // (1) start from the point estimation of covariance

        cov_point_est = np.cov(beta_hat[n_X0:, :]) / np.var(residual)
        current_vec_U_chlsk_l = \
            np.linalg.cholesky((cov_point_est + np.eye(n_C)) / 2)[l_idx]

        // We use the average of covariance of point estimation and an identity
        // matrix as the initial value of the covariance matrix, just in case
        // the user provides data in which n_V is smaller than n_C.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: brainiak/brainiak
Commit Name: 9844e657a565158d7e46b0900270b21fbcc38d82
Time: 2017-08-09
Author: lcnature@users.noreply.github.com
File Name: brainiak/reprsimil/brsa.py
Class Name: BRSA
Method Name: _initial_fit_singpara


Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 557622faca0328c0303b824006c5fe11cc87cca1
Time: 2018-05-09
Author: mathsinn@ie.ibm.com
File Name: art/attacks/virtual_adversarial.py
Class Name: VirtualAdversarialMethod
Method Name: generate


Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 9bc56cc177b7997d6b4a30d204a08ef95a03a343
Time: 2018-05-09
Author: Maria-Irina.Nicolae@ibm.com
File Name: art/attacks/virtual_adversarial.py
Class Name: VirtualAdversarialMethod
Method Name: generate