9844e657a565158d7e46b0900270b21fbcc38d82,brainiak/reprsimil/brsa.py,BRSA,_initial_fit_singpara,#BRSA#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,900
Before Change
// (3) random initialization
current_vec_U_chlsk_l = self.random_state_.randn(n_l)
// vectorized version of L, Cholesky factor of U, the shared
// covariance matrix of betas across voxels.
rho1 = np.sum(
After Change
// There are several possible ways of initializing the covariance.
// (1) start from the point estimation of covariance
cov_point_est = np.cov(beta_hat[n_X0:, :]) / np.var(residual)
current_vec_U_chlsk_l = \
np.linalg.cholesky((cov_point_est + np.eye(n_C)) / 2)[l_idx]
// We use the average of covariance of point estimation and an identity
// matrix as the initial value of the covariance matrix, just in case
// the user provides data in which n_V is smaller than n_C.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances
Project Name: brainiak/brainiak
Commit Name: 9844e657a565158d7e46b0900270b21fbcc38d82
Time: 2017-08-09
Author: lcnature@users.noreply.github.com
File Name: brainiak/reprsimil/brsa.py
Class Name: BRSA
Method Name: _initial_fit_singpara
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 557622faca0328c0303b824006c5fe11cc87cca1
Time: 2018-05-09
Author: mathsinn@ie.ibm.com
File Name: art/attacks/virtual_adversarial.py
Class Name: VirtualAdversarialMethod
Method Name: generate
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 9bc56cc177b7997d6b4a30d204a08ef95a03a343
Time: 2018-05-09
Author: Maria-Irina.Nicolae@ibm.com
File Name: art/attacks/virtual_adversarial.py
Class Name: VirtualAdversarialMethod
Method Name: generate