a615533788c1842483a9708787db0d73902dc1ec,fairseq/multiprocessing_trainer.py,MultiprocessingTrainer,_scatter_samples,#MultiprocessingTrainer#Any#Any#,242
Before Change
events = []
for d in self.device_ids:
with torch.cuda.device(d):
event = torch.cuda.Event(interprocess=True)
event.record()
events.append(event)
return res, events
After Change
// Pad with None until its size is equal to the number of replicas.
samples = samples + [None]*(self.num_replicas - len(samples))
Future.gen_list([
self.call_async(rank, "_async_prepare_sample", sample=samples[rank], volatile=volatile)
for rank in range(self.num_replicas)
])
def _async_prepare_sample(self, rank, device_id, sample, volatile):
if sample is None:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: pytorch/fairseq
Commit Name: a615533788c1842483a9708787db0d73902dc1ec
Time: 2017-09-19
Author: myleott@fb.com
File Name: fairseq/multiprocessing_trainer.py
Class Name: MultiprocessingTrainer
Method Name: _scatter_samples
Project Name: tyarkoni/pliers
Commit Name: e5e5ee0c3f7f7438a2519d32458fa72ea7af98e4
Time: 2016-10-23
Author: quinten.mcnamara@gmail.com
File Name: featurex/extractors/google.py
Class Name: GoogleVisionAPIExtractor
Method Name: _extract