len(unused_columns))
default_val = 0
metric_cat_size = len(metric_cat)
matrix = np.ones((len(metric_matrix), metric_cat_size)) * default_val
metric_labels_dict = {n: i for i, n in enumerate(metric_labels)}
// column labels in matrix has the same order as ones in metric catalog
// missing values are filled with default_val
for i, metric_name in enumerate(metric_cat):
if metric_name in metric_labels_dict:
index = metric_labels_dict[metric_name]
matrix[:, i] = metric_matrix[:, index]
LOG.debug(matrix.shape)
return matrix, metric_cat