94472724eedd3382396d435fe2810422f472967e,tests/embedding.py,,,#,9

Before Change


import torch.nn as nn
from torch.autograd import Variable

sys.path.append("../pytorch2keras")
from converter import pytorch_to_keras


class TestEmbedding(nn.Module):

After Change


        return self.embedd(input)


if __name__ == "__main__":
    max_error = 0
    for i in range(100):
        input_np = np.random.randint(0, 10, (1, 1, 4))
        input = Variable(torch.LongTensor(input_np))

        simple_net = TestEmbedding(1000)
        output = simple_net(input)

        k_model = pytorch_to_keras(simple_net, input, (1, 4), verbose=True)

        pytorch_output = output.data.numpy()
        keras_output = k_model.predict(input_np)

        error = np.max(pytorch_output - keras_output[0])
        print(error)
        if max_error < error:
            max_error = error

    print("Max error: {0}".format(max_error))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: nerox8664/pytorch2keras
Commit Name: 94472724eedd3382396d435fe2810422f472967e
Time: 2018-05-30
Author: nerox8664@gmail.com
File Name: tests/embedding.py
Class Name:
Method Name:


Project Name: nerox8664/pytorch2keras
Commit Name: 94472724eedd3382396d435fe2810422f472967e
Time: 2018-05-30
Author: nerox8664@gmail.com
File Name: tests/squeezenet.py
Class Name:
Method Name:


Project Name: biolab/orange3
Commit Name: 86c29b91c8581146079d9615982f588f197678e7
Time: 2016-03-18
Author: tankovesna@hotmail.com
File Name: Orange/widgets/classify/owclassificationtreegraph.py
Class Name: TreeNode
Method Name: rulew