fd4b66763f91bf6e940184fb01a264c941a2e90e,pythainlp/transliterate/thai2rom.py,ThaiTransliterator,__init__,#ThaiTransliterator#,15

Before Change


            self.__filemodel = get_corpus_path("thai2rom-pytorch")
        loader = torch.load(self.__filemodel, map_location=device)
        self._n_h = 64  // hidden dimensions for encoder
        self._n_s = 64  // hidden dimensions for decoder
        self._emb_dim = 64  // character embedding size
        self._maxlength = 100
        self._char_to_ix = loader["char_to_ix"]
        self._ix_to_char = loader["ix_to_char"]
        self._target_char_to_ix = loader["target_char_to_ix"]
        self._ix_to_target_char = loader["ix_to_target_char"]
        // encoder/ decoder
        // Restore the model and construct the encoder and decoder.
        self._encoder = Encoder(len(self._char_to_ix),
                                self._n_h, self._emb_dim).to(device)
        self._encoder.load_state_dict(loader["encoder_state_dict"])
        self._decoder = OneStepDecoder(
            len(self._target_char_to_ix), self._n_s, self._emb_dim).to(device)
        self._decoder.load_state_dict(loader["decoder_state_dict"])

    def _prepare_sequence_in(self, input_text):
        

After Change



        loader = torch.load(self.__filemodel, map_location=device)

        INPUT_DIM, ENC_EMB_DIM, ENC_HID_DIM, ENC_DROPOUT = loader[
                                                            "encoder_params"
                                                           ]
        OUTPUT_DIM, DEC_EMB_DIM, DEC_HID_DIM, DEC_DROPOUT = loader[
                                                             "decoder_params"
                                                            ]

        self._maxlength = 100

        self._char_to_ix = loader["char_to_ix"]
        self._ix_to_char = loader["ix_to_char"]
        self._target_char_to_ix = loader["target_char_to_ix"]
        self._ix_to_target_char = loader["ix_to_target_char"]

        // encoder/ decoder
        // Restore the model and construct the encoder and decoder.
        self._encoder = Encoder(
            INPUT_DIM,
            ENC_EMB_DIM,
            ENC_HID_DIM,
            ENC_DROPOUT
        )

        self._decoder = AttentionDecoder(
            OUTPUT_DIM,
            DEC_EMB_DIM,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 8

Instances


Project Name: PyThaiNLP/pythainlp
Commit Name: fd4b66763f91bf6e940184fb01a264c941a2e90e
Time: 2019-08-02
Author: arta@Chakris-MacBook-Pro-2.local
File Name: pythainlp/transliterate/thai2rom.py
Class Name: ThaiTransliterator
Method Name: __init__


Project Name: biolab/orange3
Commit Name: 5b58ab5c45be8923e5d74e3bc84101be1ad13066
Time: 2017-08-21
Author: ales.erjavec@fri.uni-lj.si
File Name: Orange/widgets/unsupervised/owmds.py
Class Name: OWMDS
Method Name: _setup_plot


Project Name: maciejkula/spotlight
Commit Name: bc51dbc0c56f68ed30857755026633f78eef1ae8
Time: 2017-08-20
Author: maciej.kula@gmail.com
File Name: spotlight/layers.py
Class Name: BloomEmbedding
Method Name: forward


Project Name: rtqichen/torchdiffeq
Commit Name: 7391aec984c1e9e0899d51e6b0538483c37ec8fb
Time: 2020-07-27
Author: 33688385+patrick-kidger@users.noreply.github.com
File Name: torchdiffeq/_impl/adjoint.py
Class Name:
Method Name: odeint_adjoint