b688192cbd74495c9907b6dcfce47e9a582ae1af,keras/backend/tensorflow_backend.py,,rnn,#Any#Any#Any#Any#Any#,391
Before Change
axes = [1, 0] + list(range(2, ndim))
inputs = tf.transpose(inputs, (axes))
input_list = tf.unpack(inputs)
if mask is None:
mask = ones_like(tf.slice(inputs, [0, 0, 0], [-1, -1, 1]))
inputs_shape = inputs.get_shape()
// TODO: the mask"s shape should be automatically inferred, by
// tensorflow yet for some reason it fails to in some test-cases. This
// fixes the issue, but should be removed in future.
mask.set_shape([inputs_shape[0].value, inputs_shape[1].value, 1])
mask = tf.cast(mask, tf.bool)
else:
// Transpose not supported by bool tensor types, hence round-trip to uint8.
mask = tf.cast(tf.transpose(tf.cast(mask, tf.uint8), axes), tf.bool)
mask_list = tf.unpack(mask)
states = initial_states
successive_states = []
After Change
if go_backwards:
input_list.reverse()
if mask is not None:
// Transpose not supported by bool tensor types, hence round-trip to uint8.
mask = tf.cast(tf.transpose(tf.cast(mask, tf.uint8), axes), tf.bool)
mask_list = tf.unpack(mask)
for input, mask_t in zip(input_list, mask_list):
output, new_states = step_function(input, states)
// tf.select needs its condition tensor to be the same shape as its two
// result tensors, but in our case the condition (mask) tensor is
// (nsamples, 1), and A and B are (nsamples, ndimensions). So we need to
// broadcast the mask to match the shape of A and B. That"s what the
// tile call does, is just repeat the mask along its second dimension
// ndimensions times.
tiled_mask_t = tf.tile(mask_t, tf.pack([1, tf.shape(output)[1]]))
if len(successive_outputs) == 0:
prev_output = zeros_like(output)
else:
prev_output = successive_outputs[-1]
output = tf.select(tiled_mask_t, output, prev_output)
return_states = []
for state, new_state in zip(states, new_states):
// (see earlier comment for tile explanation)
tiled_mask_t = tf.tile(mask_t, tf.pack([1, tf.shape(new_state)[1]]))
return_states.append(tf.select(tiled_mask_t, new_state, state))
states = return_states
successive_outputs.append(output)
successive_states.append(states)
else:
for input in input_list:
output, states = step_function(input, states)
successive_outputs.append(output)
successive_states.append(states)
last_output = successive_outputs[-1]
outputs = tf.pack(successive_outputs)
new_states = successive_states[-1]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: keras-team/keras
Commit Name: b688192cbd74495c9907b6dcfce47e9a582ae1af
Time: 2016-01-31
Author: francois.chollet@gmail.com
File Name: keras/backend/tensorflow_backend.py
Class Name:
Method Name: rnn
Project Name: GPflow/GPflow
Commit Name: bd1e9c04b48dd5ccca9619d5eaa2595a358bdb08
Time: 2020-01-31
Author: st--@users.noreply.github.com
File Name: gpflow/kernels/misc.py
Class Name: ArcCosine
Method Name: K_diag
Project Name: apache/incubator-mxnet
Commit Name: dd44c0c3bc168b3e88cda22c443283894fd24c54
Time: 2020-09-21
Author: lausen@amazon.com
File Name: python/mxnet/symbol/numpy/_symbol.py
Class Name: _Symbol
Method Name: __getitem__