f09b1d753bff6d85b32b52f01f4dee86511f3dbb,tensorforce/core/networks/layer.py,Linear,tf_regularization_losses,#Linear#,313
Before Change
return x
def tf_regularization_losses(self):
if self.l2_regularization == 0.0:
return super(Linear, self).tf_regularization_loss()
if super(Linear, self).tf_regularization_loss() is None:
losses = list()
else:
losses = [super(Linear, self).tf_regularization_loss()]
After Change
if self.bias is not None:
losses.append(self.l1_regularization * tf.reduce_sum(input_tensor=tf.abs(x=self.bias)))
if len(losses) > 0:
return tf.add_n(inputs=losses)
else:
return None
class Dense(Layer):
Dense layer, i.e. linear fully connected layer with subsequent non-linearity.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: reinforceio/tensorforce
Commit Name: f09b1d753bff6d85b32b52f01f4dee86511f3dbb
Time: 2017-10-21
Author: aok25@cl.cam.ac.uk
File Name: tensorforce/core/networks/layer.py
Class Name: Linear
Method Name: tf_regularization_losses
Project Name: jhfjhfj1/autokeras
Commit Name: a6819ac67444b66143ab8e0cad8a42cb7635730d
Time: 2020-07-17
Author: haifengj@google.com
File Name: autokeras/blocks/basic.py
Class Name: ResNetBlock
Method Name: build
Project Name: reinforceio/tensorforce
Commit Name: f09b1d753bff6d85b32b52f01f4dee86511f3dbb
Time: 2017-10-21
Author: aok25@cl.cam.ac.uk
File Name: tensorforce/core/networks/layer.py
Class Name: Conv2d
Method Name: tf_regularization_loss