eed514dbe06041987dd9a0998ad205601afe62f1,examples/opensets/mnist_model2.py,,,#,35
Before Change
print()
print("Start training...")
t = time()
train_pp = (mnist.train.p
.init_variable("loss_history", init_on_each_run=list)
.init_model("dynamic", MyModel, "conv",
config={"loss": "ce",
"optimizer": "Adam",
"images_shape": lambda batch: batch.images.shape[1:]})
.train_model("conv", fetches="loss", feed_dict={"input_images": "images",
"input_labels": "labels"},
append_to="loss_history")
.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=True))
print("End training", time() - t)
print()
print("Start testing...")
t = time()
test_pp = (mnist.test.p
.import_model("conv", train_pp)
.init_variable("all_predictions", init_on_each_run=list)
.predict_model("conv", fetches="predicted_labels", feed_dict={"input_images": "images",
"input_labels": "labels"},
append_to="all_predictions")
.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=False))
print("End testing", time() - t)
print("Predictions")
for pred in test_pp.get_variable("all_predictions"):
print(pred.shape)
conv = train_pp.get_model_by_name("conv")
After Change
print()
print("Start training...")
t = time()
train_pp = (mnist.train.p
.init_variable("loss_history", init_on_each_run=list)
.init_variable("current_loss", init_on_each_run=0)
.init_model("dynamic", MyModel, "conv",
config={"loss": "ce",
"optimizer": {"name":"Adam", "use_locking": True},
"images_shape": lambda batch: batch.images.shape[1:]})
.train_model("conv", fetches="loss", feed_dict={"input_images": "images",
"input_labels": "labels"},
save_to="current_loss")
.print_variable("current_loss")
.save_to_variable("loss_history", "current_loss", mode="a")
.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=True, prefetch=6))
print("End training", time() - t)
print()
print("Start testing...")
t = time()
test_pp = (mnist.test.p
.import_model("conv", train_pp)
.init_variable("all_predictions", init_on_each_run=list)
.predict_model("conv", fetches="predicted_labels", feed_dict={"input_images": "images",
"input_labels": "labels"},
append_to="all_predictions")
.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=False, prefetch=4))
print("End testing", time() - t)
print("Predictions")
for pred in test_pp.get_variable("all_predictions"):
print(pred.shape)
conv = train_pp.get_model_by_name("conv")
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 8
Instances
Project Name: analysiscenter/batchflow
Commit Name: eed514dbe06041987dd9a0998ad205601afe62f1
Time: 2017-10-16
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model2.py
Class Name:
Method Name:
Project Name: analysiscenter/batchflow
Commit Name: 9a89654a0f5de296e066a2ae6b3b4bbfc406cd99
Time: 2017-10-25
Author: rhudor@gmail.com
File Name: examples/simple_but_ugly/tf_models.py
Class Name:
Method Name:
Project Name: analysiscenter/batchflow
Commit Name: d87a501dbe2dd19ec8e55dec328318a235d769f0
Time: 2017-10-25
Author: rhudor@gmail.com
File Name: examples/simple_but_ugly/tf_models.py
Class Name:
Method Name:
Project Name: analysiscenter/batchflow
Commit Name: c14f703466aefe052878c3439509a7eae8dd7724
Time: 2017-10-16
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model2.py
Class Name:
Method Name: