super(Transition, self).__init__()
// Define a parallel stream for the different scales
self.scale_nets = nn.ModuleList()
for i in range(out_scales):
in_channels_i = in_channels * growth_factor[offset + i]
out_channels_i = out_channels * growth_factor[offset + i]
self.scale_nets.append(conv1x1_block(
After Change
for i in range(out_scales):
in_channels_i = in_channels * growth_factor[offset + i]
out_channels_i = out_channels * growth_factor[offset + i]
self.scale_blocks.add_module("scale_block{}".format(i + 1), conv1x1_block(
in_channels=in_channels_i,
out_channels=out_channels_i,
bias=True))