with tfe.protocol.SecureNN():
// get prediction input from client
x = prediction_client.provide_input()
model = tfe.keras.Sequential()
model.add(tfe.keras.layers.Dense(512, batch_input_shape=x.shape))
model.add(tfe.keras.layers.Activation("relu"))
model.add(tfe.keras.layers.Dense(10, activation=None))
logits = model(x)
// send prediction output back to client
prediction_op = prediction_client.receive_output(logits)
with tfe.Session(target=session_target) as sess:
sess.run(tf.global_variables_initializer(), tag="init")