071b27b1ffc1c38e84f64fafcc126fafa54369a1,cistar-dev/cistar/envs/loop_accel.py,SimpleAccelerationEnvironment,compute_reward,#SimpleAccelerationEnvironment#Any#Any#,54

Before Change



            return max(max_cost - cost, 0)

        elif reward_type == "distance":
            distance = np.array([self.vehicles[veh_id]["absolute_position"] - self.initial_pos[veh_id]
                                 for veh_id in self.ids])

            return sum(distance)

    def getState(self):

After Change


        
        See parent class
        
        vel = state[0]

        if any(vel < -100) or kwargs["fail"]:
            return 0.0

        max_cost = np.array([self.env_params["target_velocity"]]*self.scenario.num_vehicles)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: flow-project/flow
Commit Name: 071b27b1ffc1c38e84f64fafcc126fafa54369a1
Time: 2017-07-05
Author: akreidieh@gmail.com
File Name: cistar-dev/cistar/envs/loop_accel.py
Class Name: SimpleAccelerationEnvironment
Method Name: compute_reward


Project Name: scikit-learn-contrib/DESlib
Commit Name: f0c15f219b0761b14329ddd416cda82fa4bae841
Time: 2018-03-28
Author: rafaelmenelau@gmail.com
File Name: deslib/dcs/mcb.py
Class Name: MCB
Method Name: estimate_competence


Project Name: mathics/Mathics
Commit Name: e56f91c9b60f561712d28faae3e4d047adc67760
Time: 2016-09-14
Author: Bernhard.Liebl@gmx.org
File Name: mathics/builtin/importexport.py
Class Name: Import
Method Name: apply