if target_indexes is not None:
num_targets = len(target_indexes)
preds = np.zeros((batcher.num_seqs, buf_len, num_targets), dtype="float16")
si = 0
// get first batch
Xb, _, _, Nb = batcher.next()
while Xb is not None:
// update feed dict
fd[self.inputs] = Xb
// compute predictions
preds_batch = sess.run(self.preds_op, feed_dict=fd)
// filter for specific targets
if target_indexes is not None:
preds_batch = preds_batch[:,:,target_indexes]
// accumulate predictions
preds[si:si+Nb,:,:] = preds_batch[:Nb,:,:]
// update sequence index
si += Nb