f122269dc50b76a4656d2542709ffe4837144a24,onmt/utils/loss.py,,shards,#Any#Any#Any#,246
Before Change
yield dict(zip(keys, shard_tensors))
// Assumed backprop"d
variables = []
for k, (v, v_split) in non_none.items():
if isinstance(v, torch.Tensor) and state[k].requires_grad:
variables.extend(zip(torch.split(state[k], shard_size),
[v_chunk.grad for v_chunk in v_split]))
inputs, grads = zip(*variables)
torch.autograd.backward(inputs, grads)
After Change
// want a sequence of dictionaries of tensors.
// First, unzip the dictionary into a sequence of keys and a
// sequence of tensor-like sequences.
keys, values = zip(*((k, torch.split(v, shard_size) )
for k, v in non_none.items()))
// Now, yield a dictionary for each shard. The keys are always
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: OpenNMT/OpenNMT-py
Commit Name: f122269dc50b76a4656d2542709ffe4837144a24
Time: 2018-06-12
Author: vince62s@yahoo.com
File Name: onmt/utils/loss.py
Class Name:
Method Name: shards
Project Name: nilearn/nilearn
Commit Name: 9df22084c5753cd5b3480afddee054dcdd774438
Time: 2017-05-29
Author: dkamalakarreddy@gmail.com
File Name: nilearn/datasets/atlas.py
Class Name:
Method Name: fetch_atlas_harvard_oxford
Project Name: dmlc/gluon-nlp
Commit Name: 8880acf0899efee237251cbd01c7ff81fc535789
Time: 2018-06-22
Author: szhengac@users.noreply.github.com
File Name: scripts/nmt/bleu.py
Class Name:
Method Name: _split_compound_word