fc6c75deed83ab3b85c47e53656ab85289eaea66,examples/opensets/mnist_model3.py,,,#,20
Before Change
mnist = MNIST()
train_template = (Pipeline(config=dict(model=VGG7))
.init_variable("model", DenseNet121)
.init_variable("loss_history", init_on_each_run=list)
.init_variable("current_loss", init_on_each_run=0)
.init_variable("pred_label", init_on_each_run=list)
.init_model("dynamic", V("model"), "conv",
config={"inputs": dict(images={"shape": B("image_shape")},
labels={"classes": 10, "transform": "ohe", "name": "targets"}),
"input_block/inputs": "images",
//"input_block/filters": 16,
//"body/block/bottleneck": 1,
//"head/units": [100, 100, 10],
//"nothing": F(lambda batch: batch.images.shape[1:]),
//"body/block/filters": 16,
//"body/block/width_factor": 2,
//"body": dict(se_block=1, se_factor=4, resnext=1, resnext_factor=4, bottleneck=1),
"output": dict(ops=["accuracy"])})
.resize(shape=(64, 64))
.train_model("conv", fetches="loss",
feed_dict={"images": B("images"),
"labels": B("labels")},
save_to=V("current_loss"), use_lock=True)
.print(V("current_loss"), model=V("model"))
.update_variable("loss_history", V("current_loss"), mode="a"))
train_pp = (train_template << mnist.train)
print("Start training...")
t = time()
train_pp.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=False, prefetch=0)
print("End training", time() - t)
print()
print("Start testing...")
t = time()
test_pp = (mnist.test.p
.import_model("conv", train_pp)
.init_variable("accuracy", init_on_each_run=list)
.predict_model("conv", fetches="output_accuracy", feed_dict={"images": B("images"),
"labels": B("labels")},
save_to=V("accuracy"), mode="a")
.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=True, prefetch=0))
print("End testing", time() - t)
accuracy = np.array(test_pp.get_variable("accuracy")).mean()
print("Accuracy {:6.2f}".format(accuracy))
conv = train_pp.get_model_by_name("conv")
After Change
mnist = MNIST()
train_template = (Pipeline(config=dict(model=VGG7))
.init_variable("model", VGG7)
.init_variable("loss_history", init_on_each_run=list)
.init_variable("current_loss", init_on_each_run=0)
.init_model("dynamic", V("model"), "conv",
config={"inputs": dict(images={"shape": B("image_shape")},
labels={"classes": 10, "transform": "ohe", "name": "targets"}),
"input_block/inputs": "images",
//"input_block/filters": 16,
//"body/block/bottleneck": 1,
"head/units": [100, 100, 10],
//"nothing": F(lambda batch: batch.images.shape[1:]),
//"body/block/filters": 16,
//"body/block/width_factor": 2,
//"body": dict(se_block=1, se_factor=4, resnext=1, resnext_factor=4, bottleneck=1),
"output": dict(ops=["accuracy"])})
//.resize(shape=(64, 64))
.train_model("conv", fetches="loss",
feed_dict={"images": B("images"),
"labels": B("labels")},
save_to=V("current_loss"), use_lock=True)
.print(V("current_loss"), model=V("model"))
.update_variable("loss_history", V("current_loss"), mode="a"))
train_pp = (train_template << mnist.train)
print("Start training...")
t = time()
print(train_pp)
train_pp.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=False, prefetch=0)
print("End training", time() - t)
print()
print("Start testing...")
t = time()
test_pp = (mnist.test.p
.import_model("conv", train_pp)
.init_variable("accuracy", init_on_each_run=list)
.predict_model("conv", fetches="output_accuracy", feed_dict={"images": B("images"),
"labels": B("labels")},
save_to=V("accuracy"), mode="a")
.run(BATCH_SIZE, shuffle=True, n_epochs=1, drop_last=True, prefetch=0))
print("End testing", time() - t)
accuracy = np.array(test_pp.get_variable("accuracy")).mean()
print("Accuracy {:6.2f}".format(accuracy))
conv = train_pp.get_model_by_name("conv")
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 9
Instances
Project Name: analysiscenter/batchflow
Commit Name: fc6c75deed83ab3b85c47e53656ab85289eaea66
Time: 2018-01-15
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model3.py
Class Name:
Method Name:
Project Name: analysiscenter/batchflow
Commit Name: 202908a6634e9ac5b15658ed3f0cfe50606f32f2
Time: 2017-11-14
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model2.py
Class Name:
Method Name:
Project Name: analysiscenter/batchflow
Commit Name: 811177b712cc1eea4b59221357c6474f98315b2d
Time: 2017-10-17
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model2.py
Class Name:
Method Name:
Project Name: analysiscenter/batchflow
Commit Name: 899fd2b1572cc0306292396e2e4879df915798da
Time: 2017-10-18
Author: rhudor@gmail.com
File Name: examples/opensets/mnist_model2.py
Class Name:
Method Name: