7fe99a818f297f195ff6000d4a6ffecc6e7db774,tslearn/docs/examples/metrics/plot_dtw.py,,,#,32
Before Change
numpy.random.seed(0)
n_ts, sz, d = 2, 100, 1
dataset = random_walks(n_ts=n_ts, sz=sz, d=d)
scaler = TimeSeriesScalerMeanVariance(mu=0., std=1.) // Rescale time series
dataset_scaled = scaler.fit_transform(dataset)
path, sim = metrics.dtw_path(dataset_scaled[0], dataset_scaled[1])
plt.figure(1, figsize=(8, 8))
// definitions for the axes
left, bottom = 0.01, 0.1
w_ts = h_ts = 0.2
left_h = left + w_ts + 0.02
width = height = 0.65
bottom_h = bottom + height + 0.02
rect_s_y = [left, bottom, w_ts, height]
rect_gram = [left_h, bottom, width, height]
rect_s_x = [left_h, bottom_h, width, h_ts]
ax_gram = plt.axes(rect_gram)
ax_s_x = plt.axes(rect_s_x)
ax_s_y = plt.axes(rect_s_y)
mat = cdist(dataset_scaled[0], dataset_scaled[1])
ax_gram.imshow(mat, origin="lower")
ax_gram.axis("off")
ax_gram.autoscale(False)
ax_gram.plot([j for (i, j) in path], [i for (i, j) in path], "w-",
linewidth=3.)
ax_s_x.plot(numpy.arange(sz), dataset_scaled[1], "b-", linewidth=3.)
ax_s_x.axis("off")
ax_s_x.set_xlim((0, sz - 1))
After Change
numpy.random.seed(0)
s_x = numpy.array(
[-0.790, -0.765, -0.734, -0.700, -0.668, -0.639, -0.612, -0.587, -0.564,
-0.544, -0.529, -0.518, -0.509, -0.502, -0.494, -0.488, -0.482, -0.475,
-0.472, -0.470, -0.465, -0.464, -0.461, -0.458, -0.459, -0.460, -0.459,
-0.458, -0.448, -0.431, -0.408, -0.375, -0.333, -0.277, -0.196, -0.090,
0.047, 0.220, 0.426, 0.671, 0.962, 1.300, 1.683, 2.096, 2.510, 2.895,
3.219, 3.463, 3.621, 3.700, 3.713, 3.677, 3.606, 3.510, 3.400, 3.280,
3.158, 3.038, 2.919, 2.801, 2.676, 2.538, 2.382, 2.206, 2.016, 1.821,
1.627, 1.439, 1.260, 1.085, 0.917, 0.758, 0.608, 0.476, 0.361, 0.259,
0.173, 0.096, 0.027, -0.032, -0.087, -0.137, -0.179, -0.221, -0.260,
-0.293, -0.328, -0.359, -0.385, -0.413, -0.437, -0.458, -0.480, -0.498,
-0.512, -0.526, -0.536, -0.544, -0.552, -0.556, -0.561, -0.565, -0.568,
-0.570, -0.570, -0.566, -0.560, -0.549, -0.532, -0.510, -0.480, -0.443,
-0.402, -0.357, -0.308, -0.256, -0.200, -0.139, -0.073, -0.003, 0.066,
0.131, 0.186, 0.229, 0.259, 0.276, 0.280, 0.272, 0.256, 0.234, 0.209,
0.186, 0.162, 0.139, 0.112, 0.081, 0.046, 0.008, -0.032, -0.071, -0.110,
-0.147, -0.180, -0.210, -0.235, -0.256, -0.275, -0.292, -0.307, -0.320,
-0.332, -0.344, -0.355, -0.363, -0.367, -0.364, -0.351, -0.330, -0.299,
-0.260, -0.217, -0.172, -0.128, -0.091, -0.060, -0.036, -0.022, -0.016,
-0.020, -0.037, -0.065, -0.104, -0.151, -0.201, -0.253, -0.302, -0.347,
-0.388, -0.426, -0.460, -0.491, -0.517, -0.539, -0.558, -0.575, -0.588,
-0.600, -0.606, -0.607, -0.604, -0.598, -0.589, -0.577, -0.558, -0.531,
-0.496, -0.454, -0.410, -0.364, -0.318, -0.276, -0.237, -0.203, -0.176,
-0.157, -0.145, -0.142, -0.145, -0.154, -0.168, -0.185, -0.206, -0.230,
-0.256, -0.286, -0.318, -0.351, -0.383, -0.414, -0.442, -0.467, -0.489,
-0.508, -0.523, -0.535, -0.544, -0.552, -0.557, -0.560, -0.560, -0.557,
-0.551, -0.542, -0.531, -0.519, -0.507, -0.494, -0.484, -0.476, -0.469,
-0.463, -0.456, -0.449, -0.442, -0.435, -0.431, -0.429, -0.430, -0.435,
-0.442, -0.452, -0.465, -0.479, -0.493, -0.506, -0.517, -0.526, -0.535,
-0.548, -0.567, -0.592, -0.622, -0.655, -0.690, -0.728, -0.764, -0.795,
-0.815, -0.823, -0.821])
s_y1 = numpy.concatenate((s_x, s_x)).reshape((-1, 1))
s_y2 = numpy.concatenate((s_x, s_x[::-1])).reshape((-1, 1))
sz = s_y1.shape[0]
path, sim = metrics.dtw_path(s_y1, s_y2)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances
Project Name: rtavenar/tslearn
Commit Name: 7fe99a818f297f195ff6000d4a6ffecc6e7db774
Time: 2020-04-28
Author: romain.tavenard@univ-rennes2.fr
File Name: tslearn/docs/examples/metrics/plot_dtw.py
Class Name:
Method Name:
Project Name: rtavenar/tslearn
Commit Name: e753bb1b0170eb3d6fabc93311c31f4094f1cdad
Time: 2020-01-22
Author: kushalkolar@gmail.com
File Name: tslearn/tests/test_serialize_models.py
Class Name:
Method Name: test_serialize_timeserieskmeans
Project Name: rtavenar/tslearn
Commit Name: e753bb1b0170eb3d6fabc93311c31f4094f1cdad
Time: 2020-01-22
Author: kushalkolar@gmail.com
File Name: tslearn/tests/test_serialize_models.py
Class Name:
Method Name: test_serialize_global_alignment_kernel_kmeans