a63b4185719add4236b14a8c45b9eb302368f3c9,pyemma/coordinates/api.py,,cluster_mini_batch_kmeans,#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,1321
Before Change
res = MiniBatchKmeansClustering(n_clusters=k, max_iter=max_iter, metric=metric, init_strategy=init_strategy,
batch_size=batch_size, n_jobs=n_jobs, skip=skip, clustercenters=clustercenters)
if data is not None:
res.estimate(data, chunksize=chunk_size)
return res
def cluster_kmeans(data=None, k=None, max_iter=10, tolerance=1e-5, stride=1,
After Change
batch_size=batch_size, n_jobs=n_jobs, skip=skip, clustercenters=clustercenters)
if data is not None:
from pyemma.util.reflection import get_default_args
cs = _check_old_chunksize_arg(chunksize, get_default_args(cluster_mini_batch_kmeans)["chunksize"], **kwargs)
res.estimate(data, chunksize=cs)
return res
def cluster_kmeans(data=None, k=None, max_iter=10, tolerance=1e-5, stride=1,
In pattern: SUPERPATTERN
Frequency: 5
Non-data size: 8
Instances Project Name: markovmodel/PyEMMA
Commit Name: a63b4185719add4236b14a8c45b9eb302368f3c9
Time: 2018-02-02
Author: m.scherer@fu-berlin.de
File Name: pyemma/coordinates/api.py
Class Name:
Method Name: cluster_mini_batch_kmeans
Project Name: markovmodel/PyEMMA
Commit Name: a63b4185719add4236b14a8c45b9eb302368f3c9
Time: 2018-02-02
Author: m.scherer@fu-berlin.de
File Name: pyemma/coordinates/api.py
Class Name:
Method Name: pca
Project Name: markovmodel/PyEMMA
Commit Name: a63b4185719add4236b14a8c45b9eb302368f3c9
Time: 2018-02-02
Author: m.scherer@fu-berlin.de
File Name: pyemma/coordinates/api.py
Class Name:
Method Name: cluster_kmeans
Project Name: markovmodel/PyEMMA
Commit Name: a63b4185719add4236b14a8c45b9eb302368f3c9
Time: 2018-02-02
Author: m.scherer@fu-berlin.de
File Name: pyemma/coordinates/api.py
Class Name:
Method Name: cluster_uniform_time
Project Name: markovmodel/PyEMMA
Commit Name: a63b4185719add4236b14a8c45b9eb302368f3c9
Time: 2018-02-02
Author: m.scherer@fu-berlin.de
File Name: pyemma/coordinates/api.py
Class Name:
Method Name: cluster_regspace